

Baryo- and leptogenesis

Purpose : explain the current excess of matter/antimatter

•Is there an excess of matter?

•Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary production

Leptons: excess of electrons similar to baryons,
BUT WE DON'T KNOW about neutrinos, no direct observations + they may even be Majorana particles → lepton number not defined.

Today, direct observation suggests:

$$3 \ 10^{-11} < n_B/n_\gamma < 6 \ 10^{-8}$$

While standard cosmological constraints at the nucleosynthesis stage give the stronger, still compatible limit:

$$4 \ 10^{-10} < n_B / n_\gamma < 7 \ 10^{-10}$$

And the Cosmic Microwave Background estimate is in the range:

$$\eta_B^{CMB} = (6.1 \pm 0.5) 10^{-10}$$

If we assume however that the asymmetry comes from earlier times, before the annihilation of most particles into photons, and assume a roughtly isentropic evolution, this suggests an initial value:

$$\frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-8}$$

This small number suggests to start from a symmetrical universe, like we expect if it arises through interaction with gravity, and to generate the asymmetry by particle physics interactions.

Program

- LEARNING EXERCISE:
 - •Direct approach to baryogenesis (Sakharov Conditions)
 - •Baryon number violation limits
 - •CP vs TCP : how to generate the asymmetry
 - •Out-of-Equilibrium transitions

Difficulties with the Electroweak phase transition
LEPTOGENESIS as a solution : exploits the same mechanisms, but uses the electroweak phase transition instead of suffering from it!

Baryogenesis

Constraints on **Baryon number** conservation

- a number just invented to « explain » or « ensure » the proton stability :

 $au_n pprox 15 min$

 $\tau_p > 10^{32} years$

$$\kappa \approx 1, \quad m = 1 GeV \rightarrow \tau = 610^{-25} s$$

Typical proton instability in grand unification SU(5);

Need unification scale 10¹⁶ GeV

Proton decay goes through exchange X,

$$\Gamma \approx g^4 m_{proton}^5 / M_X^4$$

a simple calcuation leads to

 $M_X/m_p \approx 10^{(25+32+7)/4} GeV = 10^{16} GeV$

We will take SU(5) baryogenesis as an example in the next slides..

3/2/2005

This is not sufficient to generate the baryon number! Sakharov's conditions:

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, (and CP, and ..) symmetries

The decay of X violates Baryon number...., it could generate the baryon number in the early universe!

Out-of equilibrium: needed to avoid « return » reaction.

Simplest approach, in case of baryogenesis (also OK for Lepto-): use the expansion of the Universe....

If the particle X decays slower than the Universe expands →RELIC PARTICLE, Decays later and OUT OF EQUILIBRIUM

 $H = \dot{a}/a$ is the Hubble constant,

$$\tau^{-1} = \Gamma \cong g^2 M$$

$$H = \sqrt{g^*} \frac{T^2}{10^{19} GeV}$$

 g^{\ast} is the number of degrees of freedom at the time

at decay : $T\approx M$,

$$M > 10^{16} GeV$$

Violation of Baryon numberOut-of-equilibrium

- Violation of C, CP and ... symmetries

We still need one condition: the violation of Charge conjugation

Indeed, if

The decay of X generates a baryon number B=(2/3-1/3)/2=1/6BUT The decay of anti-X will generate B=-1/6

If Charge conjugation holds....

is NOT sufficient, we need also to violate combined symmetries involving C, in particular CP

A toy example : replace C by G: Gender = Man $\leftarrow \rightarrow$ Woman, P is the parity : Left-Handed $\leftarrow \rightarrow$ Right-Handed

SXHd

We need CP violation, but :

- HOW is it introduced?

- HOW does it work?

need complex coefficients

Gauge interactions =" real" , CP-conserving

 \rightarrow NEED scalar (Yukawa) couplings

 $\lambda \bar{\Psi} \phi^{\dagger} \xi + \lambda^* \bar{\xi} \phi \Psi$

We need CP violation , but :- HOW is it introduced?- HOW does it work ?

TCP implies

$$< X \mid S \mid Y > = < \bar{Y} \mid S \mid \bar{X} >$$
$$< X \mid S \mid X > = < \bar{X} \mid S \mid \bar{X} >$$

X and \bar{X} have the same lifetime ...but they may die differently

consider:

$$\begin{split} & \Gamma_{X \to uu} = r_u \quad n_B = 2/3; \quad n_L = 0 \\ & \Gamma_{X \to e^+ \bar{d}} = r_d \quad n_B = -1/3 \quad n_L = -1 \\ & \Gamma_{\bar{X} \to \bar{u}\bar{u}} = \bar{r}_u \quad n_B = -2/3 \quad n_L = 0 \\ & \Gamma_{\bar{X} \to e^- d} = \bar{r_d} \quad n_B = 1/3 \quad n_L = 1 \end{split}$$

TCP only implies

$$\Gamma(X) = \Gamma(\bar{X})$$

but we may have

$$r_u \neq \bar{r_u}$$

provided it is compensated by another channel:

$$r_u + r_d = \bar{r_u} + \bar{r_d}$$

This is sufficient to generate a NET BARYON NUMBER:

Take the decay of a pair $X + \overline{X}$, it gives

$$n_B = 2/3 \ (r_u - \bar{r_u}) - 1/3 \ (r_d - \bar{r_d}) \neq 0$$

Thus, we can generate baryon number despite TCP, provided the branching ratios of X and anti-X are different, but compensate for the total lifetime

HOW is this compensation implemented in the calculation?

Consider 2 decay channels (say, a and b) for the particle X, and the conjugate channels for the anti-X

SAHA

- Violation of C, CP and ... symmetries

We have thus met all the conditions to generate baryon number through « thermal baryogenesis », i.e., through the baryon-number violating decay of relic particles from SU(5). Yet, this scenario is no longer favored !

WHY?

• Need to introduce CP violation « by hand », through new complex scalar fields \rightarrow no relation to low energy pheno

• We assumed standard big-bang cosmo: the baryon number would be diluted in an inflation scheme, or we would need re-heating to re-create the X particles

•More importantly : the electroweak phase transition would destroy the B number just created (although this is a specific SU(5) problem)

We have seen indeed that SU(5) violates Baryon number by processes like

$$u + u \to \bar{d} + e^+$$

where $\Delta B = -1/3 - 2/3 = \Delta L = -1 - 0$

in other terms, SU(5) baryogenesis keeps (B-L) conserved !

Quantum anomalies can destroy/create B and L

considering the fermionic Lagrangian,

$$L = \bar{\psi}_L D^\mu \gamma_\mu \psi_L$$

the transformation $\psi_L \to e^{i\alpha} \psi_L$ implies, at the classical level, the conservation

$$\partial_{\mu}j_{L}^{\mu}=0$$

where $j_L{}^{\mu} = \bar{\psi_L} \gamma^{\mu} \psi_L$, and similarly for the baryons

The existence of extended (topological) solutions for the gauge fields (instantons) or, in the electroweak breaking scheme, the existence of a barrier measured by the "Sphaleron" mass, DESTROYS this conservation. For instance:

$$\partial_{\mu}j^{\mu}_{lepton,L} + \partial_{\mu}j^{\mu}_{baryon,L} = \kappa \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}F_{\rho\sigma}$$

(we have neglected fermion masses effects here, and concentrated to the Left-handed part, which is coupled to the gauge group $SU(2)_L$).

$$\partial_{\mu}j^{\mu}_{lepton,L} + \partial_{\mu}j^{\mu}_{baryon,L} = \kappa \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}F_{\rho\sigma}$$

allows to "exchange" some Baryon number for Lepton number and a change in the vacuum fields configuration

Observe that in this process, one unit of B is exchanged for -1 unit of L, which means that the exchange is permitted provided B-L is conserved (technically, their left-handed part)

These processed are normally extremely weak at current energies, but, are assumed to become fast if the temperature approaches the $e^{-M_{sphaleron}/kT}$ »sphaleron » Or the electroweak phase transition, at T ≈ 100 GeV

Possible situations if the Electroweak phase transition takes place

Out of Equilibrium

Independently of previous B or L, a new creation of B is possilbe, (but with B-L=0 for the new contribution)

Electroweak Baryogenesis ??

At (or near) Equilibrium

Pre-existing B or L can be erased, but B-L is conserved

For SU(5) baryo, B-L=0, so B and L can be totally erased.

IF B-L \neq 0, the proportions of B and L are simply changed; In particular, if only L was generated, it can be changed into B \rightarrow Leptogenesis

• NOT favoured in Standard Model :

•1st order phase transition (requires light scalar boson) excluded by LEP

•CP violation insufficient in SM: (see next slide)

•Possible in some extensions, like SUSY

•e.g. add extra scalars (including singlets and trilinear couplings to force a strong 1st order phase transition

- •Extra CP violation needed
- •Even in the best case, evaluation of the efficiency of the conversion mechanism difficult, due to extended solutions.

Electroweak Baryogenesis – Enough CP violation?

In the Standard Model, CP violation is governed, in the Kobayashi-Maskawa mechanism, by the quantity

 $J = sin(\theta_1)sin(\theta_2)sin(\theta_3)sin(\delta) * P_u * P_d$ $P_u = (m_u^2 - m_c^2) * (m_t^2 - m_c^2) * (m_t^2 - m_u^2)$ $P_d = (m_d^2 - m_s^2) * (m_b^2 - m_s^2) * (m_b^2 - m_d^2)$

This quantity has to be made dimensionless; for this, we can divide by $(100GeV)^{12}$, the result is 10^{-17} , much too small for baryogenesis!

(the same result is obtained if one prefers to use the Yukawa couplings directly, instead of the quark masses)

Leptogenesis

- Basic idea :generate L at higher temperature
- Use the electroweak phase transition near equilibrium to convert L \rightarrow B

•Advantage: insensitive to the details of the sphaleronbased mechanism, provided the transition stays close to equilibrium until completion

• Use cheap, readily available heavy Majorana neutrinos,

•... because their inclusion has recently become very popular

Do we need heavy (Majorana) neutrinos?

$\boldsymbol{\mathcal{V}}$ oscillations \rightarrow neutrino masses

Must explain how they are introduced in the Standard Model, and why they are so small

light ν masses are $\leq 1 eV$

 $m_
u/m_e \le 10^{-6}$

of course, such ratios are found:

$$m_e/m_t \le 310^{-6}$$

but the significant comparison in the Standard Model is

$$m_{
u}/m_W \le 10^{-11}$$

Possible ways to introduce masses for the light neutrinos IN THE STANDARD MODEL:

Don't want to introduce \mathcal{V}_{R}

Such (heavy) triplet is not forbidden, but its v.expectation value must be <.03 doublet vev need to introduce at least one scalar complex triplet field: χ $\lambda \overline{\Psi}_L^c \tau^a \Psi_L \chi^a$ where $\Psi_L = \begin{pmatrix} e_L \\ \nu_L \end{pmatrix}$

Don't want to introduce χ

need at least some ν_R - will be called N from

now on

3/2/2005

Rem: in extended models, other solutions, eg: SUSY

 ν masses with $\nu_{\rm R}$ = N present

Again more options:

Simplest DIRAC mass term between $\nu_{\rm L}$ and $\nu_{\rm R} = N$

$$\bar{\Psi}_L^i \lambda_{ij} N^j + h.c.$$

i is the generation index, λ are complex coefficients

OR Only difficulty : the Yukawa coëfficients must be very small

Allow for MAJORANA mass term for the neutrino singlet N

$$1/2 ar{N_i^c} M^{ij} N_j$$

Get usual See-Saw mechanism

VIOLATE Lepton number by 2 units

$$\begin{array}{c|c} \nu_{Li} & \epsilon_{ik} N_{Rk}^{+} \\ \hline \epsilon_{il} \nu_{Ll} & M_1 & m \\ N_{Ri}^{+} & m' & M_2 \end{array}$$

The diagonalisation leads to states; For $M_1 = 0$, and $m << M_2$ one gets the familiar See-Saw eigenstates and values

$$\lambda_1 \approx \nu_L - m/M \ \epsilon \cdot N_R^+ \qquad |m_1| \approx m/M^2$$

 $\lambda_2 \approx N_R + m/M \ \epsilon \cdot \nu_L^+ \qquad |m_2| \approx M$

Results in effective Majorana mass term for the light neutrino

$$\epsilon_{ij}\nu_i\nu_j \bullet \chi$$

Where the triplet is in fact simulated by 2 doublets, linked by a heavy particle, the right-handed Majorana neutrino

Thus, mixes high and low energy scales

$$m_{\nu}^{ab} \approx v^2/2 \sum \lambda^{ai} (\frac{1}{M})_{ij} \lambda^{\dagger jb}$$

3/2/2005

The mass of the neutrinos comes both from some high-energy structure (the heavy Majorana terms) and from low-energy symmetry breaking

$$m_{\nu}^{ab} \approx v^2/2 \sum \lambda^{ai} (\frac{1}{M})_{ij} \lambda^{\dagger jb}$$

We will need to return to this formula in the next lecture, as we will see that a SIMILAR, but DIFFERENT parameter governs CP violation and Leptogenesis

$$\tilde{m}_1 = (\lambda^\dagger \lambda)_{11} v^2 / M_1$$

Nice feature: CP violation is already present in the complex couplings (total of 6 phases !)

SO(10) has furthermore many nice features, like having each family in a single representation, or an automatic cancellation of anomalies....

SXHd

In fact, giving a Majorana mass to the SU(5) singlet N is precisely the simplest way to break SO(10) intoSU(5) !

$SU(5) \subset SO(10)$

and the fermions come in nice representations

$$16 = \overline{5} \oplus 10 \oplus 1$$

where $"\,1"\,$ is precisely N_R

In fact, the breaking of SO(10) into SU(5)

- breaks also the conservation of B-L (usefull for leptogenesis)
- gives mass to extra gauge bosons associated to $SU(2)_R$
- the masses of WR and Z' are similar to M, the mass of the heavy Majorana fermions.

These extra bosons must not be forgotten, and change the conclusions

How leptogenesis works....

Assume that we have some population of heavy N particles... (either initial thermal population, or re-created after inflation); due to their heavy mass and relatively small coupling, N become easily relic particles.

$$\lambda_{v} = v M^{1/2} R \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) U^{\dagger}, \quad M = \operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right),$$

If the heavy Majorana particles N are very different in mass, it is sufficient to consider the lightest (any asymmetry created by the others would be washed out by the remaining ones. - by convention it is called N₁

Define the asymmetry:

$$\varepsilon^{\phi}_{i} = \frac{\Gamma(N_{i} \rightarrow l \ \phi) - \Gamma(N_{i} \rightarrow \bar{l} \ \phi^{\dagger})}{\Gamma(N_{i} \rightarrow l \ \phi) + \Gamma(N_{i} \rightarrow \bar{l} \ \phi^{\dagger})},$$

Non-degenerate case: get approx.

$$\varepsilon_{i}^{\phi} = -\frac{3}{16\pi} \frac{1}{\left[\lambda_{\nu}\lambda_{\nu}^{\dagger}\right]_{ii}} \sum_{j \neq i} \operatorname{Im}\left(\left[\lambda_{\nu}\lambda_{\nu}^{\dagger}\right]_{ij}^{2}\right) \frac{M_{i}}{M_{j}}$$

Rem : if the N's are degenerate, the « self- energy » may lead to large enhancement of this asymmetry... but it is difficult to handle consistently the initial composition of the plasma -- 4

SHHA

Asymmetry for non-degenerate Ni– only i=1 is important

$$\varepsilon_i^{\phi} = -\frac{3}{16\pi} \frac{1}{\left[\lambda_v \lambda_v^{\dagger}\right]_{ii}} \sum_{j \neq i} \operatorname{Im}\left(\left[\lambda_v \lambda_v^{\dagger}\right]_{ij}^2\right) \frac{M_i}{M_j}.$$

Involves 6 phases, and 3 M, while low energy only gives access to $(1 \text{ osc} + 2 \text{ maj ph})^{\circ}$

Other decay channels...

$$\varepsilon_i^{\phi} = \frac{\Gamma(N_i \to l \ \phi) - \Gamma(N_i \to \overline{l} \ \phi^{\dagger})}{\Gamma(N_i \to l \ \phi) + \Gamma(N_i \to \overline{l} \ \phi^{\dagger})},$$

Remember that the asymmetry parameter used this far is NOT the whole story...

$$\Gamma^{tot}_{N_1} = \left[\Gamma(N_1 \to l \phi) + \Gamma(N_1 \to \bar{l} \phi^{\dagger}) \right] (1+X)$$

Gauge-mediated decays are mostly CP conserving

Dilution factor X ?

$$a_w = \frac{M_{W_R}^2}{M_1^2}$$

 $M_{W_R} < M_1 \Rightarrow 2\text{-body decay}$

$$\Rightarrow X$$
 Large $\sim 10^4 - 10^5$

 \Rightarrow too much dilution

$$M_{W_R} > M_1 \implies 3\text{-body decay}$$

$$\Rightarrow X = \frac{3g^4v^2}{2^7\pi^2} \frac{1}{\tilde{m}_1 M_1 a_w^2}$$

$$\Rightarrow a_w \sim 10 \Rightarrow X \sim 10$$

In fact, the presence of WR will prove beneficial in some cases (re-heating after inflation)

3/2/2005

Diffusion equations....also contribute to the wash-out of lepton number...

(Reaction Rate/ Expansion Rate) should be < 1:

All these effects are incorporated into the « efficiency »

 $n_b/n_\gamma \propto \epsilon_1 Y_{N_1}^{eq}(0) \eta_{\text{eff}}$ L violation efficiency Initial abundance

Initial conditions:

•Thermal leptogenesis : high- temperature N distribution Cf previous study: assume scalar field produces asym. via virtual Majoranas → simpler formulation of initial state for degenerate N

•Inflation followed by re-heating •Various scenarios depending on inflation scheme: •Inflation attributed to scalar field (inflaton,...) which may couple only to light modes, N must be re-created after inflation •New developments: •inflation field linked to dark matter •Might even have inflation field preferably coupled to heavy Majorana ...

Efficiencies

 $M(W_R) = 100 M_N$

Also include Leptonic to Baryonic number conversion at the electroweak phase transition.

Initial situation :

$$B_i = 0 \ L_i = L_0 \rightarrow (B - L)_i = -L_0 = -(B + L)_i$$

If the transition is complete, B + L is completely suppressed, while (B-L) is conserved

$$(B+L)_f = 0 \ (B-L)_f = -L_0$$

thus

$$B_f = -1/2 \ L_0$$

(much) more elaborate calculations claim:

$$B_f = -28/79 L_0$$

Allowed contours in $M_1 - \tilde{m_1}$ plane,

solid line = thermal Majorana initial population

dashed line = Majorana population rebuilt after reheating

$$a_W = \frac{M_{W_R}^2}{M_1^2}$$

44

Conclusions : Leptogenesis

• Valid scheme, simple processes;

•Weakest point may remain L to B conversion at the Electroweak transition, but less critical than other schemes (only assumes completion of transition close to equilibrium)

• Quite some freedom left – 6 phases at high energy, while only 3 (difficult to observe) at low energy

• 1 phase observable (?) in oscillations,

• 1 combination of remaining 2 phases and masses plays in neutrinoless double beta decay

• Full comparison with observed light neutrino masses depends on explicit mass model

• Must include realistic high energy scheme, not just Massive Neutrinos (for instance, W_R ..)